Engine c\$li)r\$tion is t+pic\$ll+ performe0)+ \$n 3E#, /hile the EC1 co0e is o/ne0)+ the s*pplier of the EC1. -herefore, the 3E# is t+pic\$II+ *n\$)le to set *p \$n EC1 sim*I\$tion)\$se0 on the origin\$I C co0e of the EC1. 4nste\$0, to set *p optimi, \$tion on 5C, time cons*ming \$n0 error prone reverse engineering is nee0e0 to 0evelop \$n le.*iv\$lent mo0ell of the EC1 f*nction of interest. -o 0e\$l /ith this sit*\$tion, /e h\$ve implemente0 \$ novel metho0 for \$*tom\$ting the c\$li)r\$tion of engine p\$r\$meters. -he metho0 com)ines t/o i0e\$s

- sim*I\$tion of EC1 progr\$m co0e on 5C *sing chip sim*I\$tion
- m\$them\$tic\$l optimi,\$tion)\$se0 on the res*lting exec*t\$)le mo0el
- -he sim*l\$tion re.*ires onl+ the hex, 7%75!\$\$!I \$n0 m\$p file, th\$t \$n 3E# t+pic\$Il+ h\$s \$ccess to,)*t not the so*rce co0e of the EC1 f*nctions of interest.
- -his p\$per Oescri)es \$lso \$ pro)lem th\$t /e enco*ntereO /hen co*pling chip sim*l\$tion / ith optimi,\$tion metho0s th\$t re.*ire gr\$0ients to g*i0e se\$rch for optim\$2 p\$rti\$1 Oeriv\$tives of engine f*nctions / ith r Aiotn / à \$ep6 res*It, gr\$0ient)\$se0 optim

/ith s*)9optim\$I sol*tions. -he p\$per \$lso s(etches i0e\$s ho/ to overcome this pro)lem \$n0 presents res*lts of n*meric\$l experiments.

%im*I\$tion h\$s gre\$t potenti\$I to improve the 0evelopment process for EC1s. %im*I\$tion helps to move Oevelopment t\$s(s to 5C, /here the+ often c\$n)e performe0 f\$ster, che\$per or) etter in some respect :7;. -o exploit these) enefits, the EC1 m*st first)e porte0 to 5C. -his is t+pic\$II+ 0one)\$se0 on the C co0e of the EC1, /hich is either h\$n0 co0e0, or gener\$te0)+ tools s*ch \$s 7scet (E-7%), - $\frac{1}{2}$ - $\frac{1}{2}$ virt*\$I EC1 tool %ilver :1; provi0es \$ fr\$me / or(to

- compile given EC1 t\$s(s for = in0o/s 5C,
- em*l\$te the *n0erl+ing ? 3% \$n0 other services (C7@, AC5),
- r*n the res*lting virt*\$I EC1 close09loop / ith \$ sim*I\$te0 vehicle.
- -+pic\$I \$pplic\$tions \$re :!, ;, /here \$ virt*\$I EC1 is *se0 to 0evelop the controller for \$n \$*tom\$tic tr\$nsmission. &or close09loop sim*l\$tion, vehicle mo0els c\$n)e importe0 from m\$n+ sim*l\$tion tools into %ilver, incl*0ing #7 -<7B8%im*lin(, D+mol\$,

Co/ever, sometimes C co0e is not vil\$) le for implementing \$ virt*\$ EC1. -here \$re t/o m\$in so*rces for s*ch \$ sit*\$tion2

- Protection of intellectual property2 7II or m\$lor p\$rts of the EC1 h\$ve)een 0evelope0)+ \$ s*pplier \$n0 the 3E# intereste0 in)*il0ing \$ virt*\$I EC1 (e.g. to s*pport c\$li)r\$tion, \$ t\$s(t+pic\$II+ performe0)+ \$n 3E#) h\$s therefore no \$ccess to the C co0e.
- Target-specific C code² C co0e is \$v\$il\$)le)*t the C co0e *ses pr\$gm\$s \$n0 other t\$rget or compiler specific constr*cts, /hich prevents compil\$tion for other t\$rgets, s*ch \$s the = in0o/s x8 pl\$tform.
- -o 0e\$I /ith s*ch sit*\$tions, /e h\$ve recentl+ integr\$te0 \$ chip sim*I\$tor into the virt*\$I EC1 tool %ilver. -his /\$+, \$ virt*\$I EC1 c\$n)e)*il0)\$se0 on \$ hex file compile0 for the t\$rget processor of the EC1. @o \$ccess to C co0e is nee0e0 in this c\$se. 4nste\$0 of compiling C co0e for the = in0o/s x8 pl\$tform, the chip sim*I\$tor t\$(es the)in\$r+ compile0 for the t\$rget processor \$n0 sim*I\$tes the exec*tion of the instr*ctions)+ the t\$rget processor on = in0o/s 5C. %*ch \$ sim*I\$tion re.*ires
- 1. \$ hex file th\$t cont\$ins progr\$m co0e \$n0 p\$r\$meters of the sim*l\$te0 f*nctions
- !. st\$rt \$00resses of the f*nctions to)e sim*l\$te0
- ". \$n 7%75!\\$!I file th\$t Oefines the conversion r*les for the involve0 inp*ts, o*tp*ts, \$n0 ch\$r\$cteristics, \$s / ell \$s correspon0ing \$00resses
- -he st\$rt \$00resses of f*nctions c\$n e. g.)e extr\$cte0 from \$ m\$p file gener\$te0 together /ith the hex file. %ilver *ses the \$!I file to \$*tom\$tic\$II+ convert sc\$le0 integer v\$I*es to ph+sic\$I v\$I*es \$n0 vice vers\$ 0*ring sim*I\$tion. %*ch \$ chip sim*I\$tion mo0el c\$n \$lso)e exporte0 \$s %&*nction (mex/"! file) for *se in #7-<7B8%im*Iin(. 3n \$ st\$n0\$r0 5C, hex sim*I\$tion r*ns /ith \$)o*t B0 <math>#45%. 4f onl+ sim*I\$ting selecte0 f*nctions of \$n EC1, this is f\$st eno*gh to r*n \$ sim*I\$tion m*ch f\$ster th\$n re\$I9time.
- -he p\$per is str*ct*re0 \$s follo/s2 %ection! Oescri)es ho/ to *se chip sim*l\$tion to)*il0 \$n0 r*n \$ virt*\$l EC1 on 5C. 4n section ", /e report ho/ the res*lting EC1 mo0el h\$s)een co*ple0 / ith n*meric\$l optimi,\$tion to \$*tom\$te engine c\$li)r\$tion.

 $s^*ch \ \ s \ \ positions \ re\\ che0)+ the \ cr\\ (sh\ \ re \ \ (in0s \ of \ t\\ s(s \ c\\ n \)e \ \ 0 \ \ (sh\ \ re \ \ re \ \)$

- 1. t\$s(s th\$t gener\$te sign\$ls, e.g.)+ re\$0ing sensors or C7@ mess\$ges
- !. t\$s(s th\$t comp*te o*tp*t sign\$ls from inp*t sign\$ls
- ". t\$s(s th\$t *se sign\$ls to comm\$n0 \$ct*\$tors or to cre\$te C7@ mess\$ges

-he t\$s(s of c\$tegories 1 \$n0 " t+pic\$II+ 0epen0 on 0et\$ils of the p\$rtic*I\$r chip (s*ch \$s h*n0re0s of registers of on9chip 0evices), \$n0 on the EC1 h\$r0/\$re. 4n contr\$st, t\$s(s of c\$tegor+ ! \$re f\$irl+ in0epen0ent from s*ch h\$r0/\$re9specific 0et\$ils. -o sim*I\$te EC1 co0e, it is therefore convenient to r*n onl+ t\$s(s of c\$tegor+ !. -he re.*ire0 inp*ts for these t\$s(s c\$n either)e t\$(en from me\$s*rement files (open9loop sim*I\$tion), or the+ \$re comp*te0 online)+ some pl\$nt mo0el (close09 loop sim*I\$tion),)+p\$ssing the t\$s(s of c\$tegor+ 1. <i(e/ise, the o*tp*ts of c\$tegor+ ! t\$s(s c\$n)e 0irectl+ comp\$re0 to me\$s*rements (open loop) or fe0 into the pl\$nt mo0el (close0 loop),)+p\$ssing the c\$tegor+ " t\$s(s. -he sign\$l interf\$ce)et/een c\$tegories 19! \$n0 !9" is t+pic\$II+ /ell 0oc*mente0 \$n0 \$v\$il\$)le, e.g. from the C7@ specific\$tion (DBC file) of the EC1.

-his mo0elling str\$teg+ h\$s \$ ver+ goo0 cost9) enefit r\$tio. 4n or0er to sim*l\$te \$lso the t\$s(s of c\$tegories 1 \$n0 ", one h\$s to mo0el h*n0re0s or peripher\$l \$n0 chip specific registers, \$n0 to)*il0 st\$te9m\$chine mo0els for lo/9level peripher\$ls, s*ch \$s C7@ controllers. -echnic\$ll+, this is possi)le, e. g. /ith %+stemC :F;,)*t h\$r0l+ l*stifie0)+ the \$00e0 v\$l*e, \$t le\$st for the \$pplic\$tion consi0ere0 here.

%ilver !.F *ses \$ specific\$tion file (simil\$r to the 34< file *se0 to config*re 3%EG) to specif+, /hich t\$s(s of \$ hex file to sim*l\$te. %ilver \$*tom\$tic\$II+ t*rns s*ch \$ spec file into \$n exec*t\$) le %ilver mo0*le (OII) or %*nction. 7 t+pic\$I spec file loo(s \$s follo / s2

```
01 # specification of sfunction or Silver module
02 hex_file(m12345.hex, Tri ore!1.3.1"
03 a21_file(m12345.a21"
04 map file(m12345.map"
                             # a T#S$%&' or '&( map file
05 frame_file(frame.s"
                             # assem) ler code to emulate *T+S
0, frame_set(ST-.!S%/-, 10" # Silver step si0e in ms
01 frame_set(T-2T!ST#*T, 0xa0000000" # location of frame code
03
04 # functions to )e simulated, in order of execution
10 task_initial(#5 6-!ini"
11 task_initial(#5 6-!inis7n"
12 task_triggered(#5 6-!s7n, tri88er!#5 6-!s7n"
13 task_periodic(#5 6-!20ms, 20, 0"
14 task_periodic(#5 6-!200ms, 200, 0"
15
1, # interface of the 8enerated sfunction or Silver module
11 a2l_function_inputs(#5 6-"
13 a21_function_outputs(#5 6-"
14 a2l_function_parameters_defined(#5 6-"
```

"

7th Conference on Design of Experiments (DoE) in Engine Development, Berlin, 18. – 19.0 .!01"

= in0o/s 5C /ith 4ntel iF processor \$t !.B EC, \$n0 !.9! EB ?7#. 7ver\$ge exec*tion times fo*n0 this /\$+\$re sho/n in -\$)le 1.

		"#
4nfineon tsim	919.1F sec	0.B1
%ilver mo0*le	9."0 sec	B0.80

Ta "le 1: Perfor #ance of chip si #ulation for the BGLWM e\$a #ple

-he EC1 consi0ere0 here (#ED17 /ith -C1797) r*ns \$t !00 #C, \$n0 h\$s \$ perform\$nce of \$) o*t "00 #45%. @evertheless, on the EC1, the exec*tion time for the ".F min*tes scen\$rio is of co*rse ex\$ctl+ ".F min*tes, 0*e to the re\$I time constr\$int. 3n \$5C, this f*nction r*ns !0 times f\$ster.

%ilver c\$n \$lso t*rn \$ spec file \$s 0escri)e0 in section !.1 into \$ %&*nction, i.e. \$ mex / "! file th\$t r*ns in %im*lin(. -his is p\$rtic*l\$rl+ interesting /hen *sing chip sim*l\$tion to s*pport \$*tom\$te0 optimi,\$tion of p\$r\$meters,)ec\$*se m\$n+ optimi,\$tion tools \$re implemente0 on top of #7-<7B8%im*lin(. -he gener\$te0 %&*nction \$ccepts \$II ch\$r\$cteristics liste0 in the spec file \$s %&*nction p\$r\$meters. -his m\$(es it e\$s+ to connect the gener\$te0 %&*nction /ith \$n optimi,\$tion proce0*re. &or ex\$mple, the %&*nction c\$n)e c\$Ile0 /ith /or(sp\$ce v\$ri\$)les th\$t \$re then \$*tom\$tic\$Il+ v\$rie0)+ the optimi,\$tion proce0*re)et /een %&*nction c\$lls. -he perform\$nce of \$ gener\$te0 %&*nction is \$g\$in \$)o*t B0 \$\#45\%.

Ī

= e h\$ve com)ine0 chip sim*l\$tion \$s 0escri)e0 \$)ove /ith \$ proce0*re for n*meric\$I optimi,\$tion to comp*te optim\$I v\$I*es for cert\$in engine p\$r\$meters. -hese comp*t\$tions re.*ire \$n \$cc*r\$te \$n0 f\$st mo0el of the engine f*nction of interest. 4n the p\$st, /e h\$ve *se0 h\$n09co0e0 mo0els of EC1 f*nctions, 0evelope0 /ith #7-<7B8%im*lin(. -his h\$s)een time cons*ming \$n0 error prone. = e h\$ve no / p\$rti\$ll+ repl\$ce0 these h\$n09co0e0 mo0els / ith %&*nctions gener\$te0 \$*tom\$tic\$II+)+ %ilver from \$ given hex file. -he gener\$te0 %&*nctions prove0 to r*n \$s f\$st \$s their h\$n0 co0e0 co*nterp\$rts. -he repl\$cement of h\$n09co0e0 flo\$ting9 point mo0els)+ gener\$te0 fixe09point %&*nctions r\$ises the follo/ing pro)lem2 %ome optimi, \$tion proce0*res re. *ire gr\$0ient inform\$tion to g*i0e the se\$rch for optim\$1 p\$r\$meter v\$1*es2 = hen se\$rching for \$n th\$t minimi, es f(), the Oeriv\$tive df/dx is to)e comp*te0 0*ring optimi, \$tion for 0ifferent v\$I*es of x. &inite 0ifferences \$re often *se0 here2 df/dx is comp*te0 \$s (f(x + h) - f(x)) / h for sm\$II h, s\$+ h H 10⁹. 4f f is comp*te0 *sing chip sim*l\$tion, x \$n0 x+h \$re often) oth m\$ppe0 to the s\$me integer, res*lting in \$,ero gr\$0ient. 7s \$ conse. *ence, the optimi, \$tion proce0*re is I\$c(ing g*i0\$nce, \$n0 might ret*rn \$ s*) optim\$l sol*tion.

-his section presents i0e\$s ho / to overcome this pro)lem \$n0 some res*lts of n*meric\$l experiments. -here \$re \$lso so9c\$lle0 0eriv\$tive9free proce0*res for optimi,\$tion. 3)vio*sl+, these \$re not \$ffecte0)+ the \$)ove pro)lem. -his is exploite0 in :8;.

3ptimi,\$tion in engine Oevelopment c\$n fre.*entl+)e form*l\$te0 \$s le\$st9s.*\$res optimi,\$tion. -he o)lective is then to minimi,e \$ go\$l f*nction

$$g(x) = \sum_{i=1}^{m} f_i^2(x)$$
 (1)

/here x is \$ vector of n re\$I v\$I*e0 p\$r\$meters. 7 t+pic\$I \$pplic\$tion is c*rve fitting. -he engine controller cont\$ins \$ f*nction model(x, t) th\$t estim\$tes \$ ph+sic\$I . *\$ntit+th\$t the controller c\$nnot me\$s*re 0irectl+. -his mo0el nee0s to)e c\$II)r\$te0)+ choosing p\$r\$meters x s*ch th\$t \$ me\$s*re0 series of m 0\$t\$ points is pre0icte0)+ the mo0el \$s goo0 \$s possi)le, i.e. the s . *\$re0 s*m of the m re\$I9v\$I*e0 resi0*\$Is

$$f_i(x) = model(x, t_i) - measurement(t_i)$$
 (!)

gets minimi, e0. 4n t+pic\$l \$pplic\$tions, there \$re h*n0re0s of 0\$t\$ points \$n0 p\$r\$meters.

7 Igorithms t+pic\$II+ *se0 for le\$st9s.*\$res optimi,\$tion \$pproxim\$te for 0ifferent choices of x the '\$co)i\$n

$$J_{i,j}(x) = \lim_{h \to 0} \frac{f_i(s(x, j, h)) - f_i(x)}{h}$$

$$s_k(x, j, h) = if(j = k) then(x_k + h) else x_k$$
(")

to 0etermine $t \$ given point x in p\$r\$meter sp\$ce the 0irection of steepest 0escent of g(x). E\$ch element of the \$)ove '\$co)i m\$trix is t+pic\$II+ \$pproxim\$te0)+ \$ finite 0ifference

$$D_{i,j}(x) = \frac{f_i(s(x,j,h)) - f_i(x)}{h}$$
 (B)

/ith s*fficientl+ sm\$II h, s\$+ h H 109.

Engine controllers \$re fre.*entl+ implemente0 *sing fixe09point co0e, i.e. \$ll comp*t\$tions \$re performe0 *sing integers, not flo\$ting point n*m)ers. 7s \$ conse.*ence, /hen implementing the go\$l f*nction g (or l*st the resi0*\$ls f) *sing

4n gener\$I, /hen optimi,ing go\$I f*nctions implemente0 *sing chip sim*I\$tion /ith

r*gge0 l\$n0sc\$pe seen in &ig. !d \$n0 h. -he const\$nt f\$ctor k is intro0*ce0 to compens\$te this. &or ex\$mple, choosing k H 10 \$ver\$ges the 0eriv\$tives \$cross 10 gri0 points, / hich re0*ces the noise gener\$te0)+ integer ro*n0ing.

&or given x, e\$ch element of the m\$trix H(x) c\$n)e comp*te0)+ se\$rching for the lo/er (min

3ne interesting point is cross9comp\$rison of fo*n0 sol*tions2 -he h\$n0 co0e0 %im*lin(mo0el gener\$te0 \$ sol*tion xOptSimulink / ith

gSimulink(xOptSimulink) H 0.01B8

/hile optimis\$tion /ith chip sim*l\$tion gener\$te0 \$ slightl+ 0ifferent sol*tion xOpt hipsim /ith

g hipsim(xOpt hipsim) H 0.01B9

Cross9comp\$rison sho / s th\$t) oth go\$I f*nctions 0efine slightl+ 0ifferent optim\$2 gSimulink(xOpt hipsim) H 0.0!00

g hipsim(xOptSimulink) H 0.0!17

-he go\$l f*nction g hipsim is ho/ever \$)it \$cc*r\$te mo0el of the comp*t\$tion of the re\$l engine controller, /hile gSimulink is \$ h\$n09co0e0 mo0el /ith \$ cert\$in mo0eling error. = e therefore)elieve th\$t on the re\$l engine controller, the sol*tion fo*n0)+ chip sim*l\$tion performs effectivel+)etter (0.01B9) th\$n the one fo*n0)+ the h\$n09 co0e0 %im*lin(mo0el (0.0!17).

\$

7s 0emonstr\$te0 \$) ove, \$n EC1 hex file compile0 for some t\$rget processor c\$n)e exec*te0)+ the virt*\$I EC1 tool %ilver on = in0o/s 5C, either open9loop 0riven)+ me\$s*rements or in close09loop / ith \$ vehicle mo0el. Depen0ing on the \$pplic\$tion, selecte0 EC1 f*nctions \$re sim*I\$te0, or ne\$rl+ the entire EC1. 7s sho/n in section ", s*ch chip sim*I\$tions c\$n)e co*ple0 / ith optimis\$tion proce0*res.

-his (in0 of sim*I\$tion opens ne / possi)ilities to move 0evelopment t\$s(s from ro\$0, test rig or Ci< to 5Cs, /here the+ c\$n)e processe0 f\$ster, che\$per or)etter in some respect, /itho*t re.*iring \$ccess to the *n0erl+ing C co0e. D\$imler c*rrentl+ *ses this innov\$tive sim*I\$tion \$ppro\$ch to s*pport controls 0evelopment for g\$soline \$n0 0iesel engines, see \$lso :8;. 3ther \$pplic\$tions, s*ch \$s online c\$li)r\$tion on 5C vi\$ AC5 seem to)e 0o\$)le \$s /ell.

-

- :1; 7. '*ngh\$nns, ?. %er/\$+, -. <ie)e,eit, #. Bonin2 B*il0ing Lirt*\$I EC1s > *ic(I+ \$n0 Economic\$II+, 7-M ele(troni(0"8!01!, '*ni !01!. %ee ///.7-Monline.0e or http288.tronic.0e80oc87-MeN!01!Nen.p0f
- :!; C. BrOc(m\$nn, '. %tren(ert, 1. Geller, B. = iesner, 7. '*ngh\$nns2 #o0el9)\$se0 Development of \$ D*\$l9Cl*tch -r\$nsmission *sing ?\$pi0 5rotot+ping \$n0 %i<. 4ntern\$tion\$I LD4 Congress -r\$nsmissions in Lehicles !009, &rieOrichsh\$fen, Eerm\$n+, "0.0 .901907.!009. http288.tronic.0e80oc8DC-N!009.p0f
- :"; G. ?Pp(e (e0.)2 Design of Experiments (DoE) in Engine Development 9 4nnov\$tive Development #etho0s for Lehicle Engines. Expert Lerl\$g, !011.
- :B; -. Bloch / it,, #. 3tter et. \$1.2 &*nction\$I #oc(*p 4nterf\$ce !.02 he %t\$n0\$r0 for -ool in0epen0ent Exch\$nge of %im*I\$tion #o0els. 9th 4ntern\$tion\$I #o0elic\$ Conference, #*nich, !01!.
- :F; %+stemC, <\$ng*\$ge for %+stem9<evel #o0eling, Design \$n0 Lerific\$tion, see ///.s+stemc.org

: ; #. -\$t\$r, ?. %ch\$ich, -. Breitinger2 7*tom\$te0 test of the 7# E %pee0shift DC-control soft / \$re. 9th 4ntern\$tion\$I C-4 %+mposi*m 4nnov\$tive 7*tomotive -r\$ns9 missions, Berlin, !010. http288.tronic.0e80oc8-est = e\$verNC-4N!010Np\$per.p0f